CELIS/APPLICATION/MM/hashmap.c
lidun 7a7daad23a
完成UDS升级
Signed-off-by: lidun <1084178170@qq.com>
2024-01-30 11:31:27 +08:00

1151 lines
36 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2020 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#include "hashmap.h"
#define GROW_AT 0.60
#define SHRINK_AT 0.10
static void *(*__malloc)(size_t) = NULL;
static void *(*__realloc)(void *, size_t) = NULL;
static void (*__free)(void *) = NULL;
// hashmap_set_allocator allows for configuring a custom allocator for
// all hashmap library operations. This function, if needed, should be called
// only once at startup and a prior to calling hashmap_new().
void hashmap_set_allocator(void *(*malloc)(size_t), void (*free)(void*)) {
__malloc = malloc;
__free = free;
}
struct bucket {
uint64_t hash:48;
uint64_t dib:16;
};
// hashmap is an open addressed hash map using robinhood hashing.
struct hashmap {
void *(*malloc)(size_t);
void *(*realloc)(void *, size_t);
void (*free)(void *);
size_t elsize;
size_t cap;
uint64_t seed0;
uint64_t seed1;
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1);
int (*compare)(const void *a, const void *b, void *udata);
void (*elfree)(void *item);
void *udata;
size_t bucketsz;
size_t nbuckets;
size_t count;
size_t mask;
size_t growat;
size_t shrinkat;
uint8_t growpower;
bool oom;
void *buckets;
void *spare;
void *edata;
};
void hashmap_set_grow_by_power(struct hashmap *map, size_t power) {
map->growpower = power < 1 ? 1 : power > 16 ? 16 : power;
}
static struct bucket *bucket_at0(void *buckets, size_t bucketsz, size_t i) {
return (struct bucket*)(((char*)buckets)+(bucketsz*i));
}
static struct bucket *bucket_at(struct hashmap *map, size_t index) {
return bucket_at0(map->buckets, map->bucketsz, index);
}
static void *bucket_item(struct bucket *entry) {
return ((char*)entry)+sizeof(struct bucket);
}
static uint64_t clip_hash(uint64_t hash) {
return hash & 0xFFFFFFFFFFFF;
}
static uint64_t get_hash(struct hashmap *map, const void *key) {
return clip_hash(map->hash(key, map->seed0, map->seed1));
}
// hashmap_new_with_allocator returns a new hash map using a custom allocator.
// See hashmap_new for more information information
struct hashmap *hashmap_new_with_allocator(void *(*_malloc)(size_t),
void *(*_realloc)(void*, size_t), void (*_free)(void*),
size_t elsize, size_t cap, uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b, void *udata),
void (*elfree)(void *item),
void *udata)
{
_malloc = _malloc ? _malloc : __malloc ? __malloc : malloc;
_realloc = _realloc ? _realloc : __realloc ? __realloc : realloc;
_free = _free ? _free : __free ? __free : free;
size_t ncap = 16;
if (cap < ncap) {
cap = ncap;
} else {
while (ncap < cap) {
ncap *= 2;
}
cap = ncap;
}
// printf("%d\n", (int)cap);
size_t bucketsz = sizeof(struct bucket) + elsize;
while (bucketsz & (sizeof(uintptr_t)-1)) {
bucketsz++;
}
// hashmap + spare + edata
size_t size = sizeof(struct hashmap)+bucketsz*2;
struct hashmap *map = _malloc(size);
if (!map) {
return NULL;
}
memset(map, 0, sizeof(struct hashmap));
map->elsize = elsize;
map->bucketsz = bucketsz;
map->seed0 = seed0;
map->seed1 = seed1;
map->hash = hash;
map->compare = compare;
map->elfree = elfree;
map->udata = udata;
map->spare = ((char*)map)+sizeof(struct hashmap);
map->edata = (char*)map->spare+bucketsz;
map->cap = cap;
map->nbuckets = cap;
map->mask = map->nbuckets-1;
map->buckets = _malloc(map->bucketsz*map->nbuckets);
if (!map->buckets) {
_free(map);
return NULL;
}
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
map->growpower = 1;
map->growat = map->nbuckets*GROW_AT;
map->shrinkat = map->nbuckets*SHRINK_AT;
map->malloc = _malloc;
map->realloc = _realloc;
map->free = _free;
return map;
}
// hashmap_new returns a new hash map.
// Param `elsize` is the size of each element in the tree. Every element that
// is inserted, deleted, or retrieved will be this size.
// Param `cap` is the default lower capacity of the hashmap. Setting this to
// zero will default to 16.
// Params `seed0` and `seed1` are optional seed values that are passed to the
// following `hash` function. These can be any value you wish but it's often
// best to use randomly generated values.
// Param `hash` is a function that generates a hash value for an item. It's
// important that you provide a good hash function, otherwise it will perform
// poorly or be vulnerable to Denial-of-service attacks. This implementation
// comes with two helper functions `hashmap_sip()` and `hashmap_murmur()`.
// Param `compare` is a function that compares items in the tree. See the
// qsort stdlib function for an example of how this function works.
// The hashmap must be freed with hashmap_free().
// Param `elfree` is a function that frees a specific item. This should be NULL
// unless you're storing some kind of reference data in the hash.
/**
* @description: <20><><EFBFBD><EFBFBD>һ<EFBFBD><D2BB>hash<73><68>ָ<EFBFBD><D6B8>
* @param elsize:<3A><><EFBFBD><EFBFBD>' elsize '<27><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿ<EFBFBD><C3BF>Ԫ<EFBFBD>صĴ<D8B5>С<EFBFBD><D0A1><EFBFBD><EFBFBD><EFBFBD>롢ɾ<EBA1A2><C9BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿ<EFBFBD><C3BF>Ԫ<EFBFBD>ض<EFBFBD><D8B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С<EFBFBD><D0A1>
* @param cap:<3A><><EFBFBD><EFBFBD>' cap '<27><>Ĭ<EFBFBD>ϵ<EFBFBD>hashmap<61>Ľϵ<C4BD><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ0 <20><>Ϊ16
* @param seed0:<3A><><EFBFBD><EFBFBD>' seed0 '<27><>' seed1 '<27>ǿ<EFBFBD>ѡ<EFBFBD><D1A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5>
* <20><><EFBFBD>ݸ<EFBFBD><DDB8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><><C9A2>'<27><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Щֵ<D0A9><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϣ<EFBFBD><CFA3><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD>ͨ<EFBFBD><CDA8><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʹ<EFBFBD><CAB9><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɵ<EFBFBD>ֵ<EFBFBD><D6B5>
* @param seed1:
* @param hash:<3A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>hash<73><68><EFBFBD><EFBFBD>һ<EFBFBD><D2BB>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD>ɹ<EFBFBD>ϣֵ<CFA3>ĺ<EFBFBD><C4BA><EFBFBD>
* <20>һ<E1B9A9><D2BB><EFBFBD>õ<EFBFBD>ɢ<EFBFBD>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ܻ<EFBFBD><DCBB>ܲ<DCB2><EEA3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ܵ<EFBFBD><DCB5>ܾ<EFBFBD><DCBE><EFBFBD><EFBFBD>񹥻<EFBFBD>
* <20><><EFBFBD><EFBFBD>ʵ<EFBFBD>ִ<EFBFBD><D6B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>' hashmap_sip() '<27><>' hashmap_murmur()'<27><>
* @param compare:
* @param elfree:
* @param udata:
* @return {*}
* @author: Arnold
*/
struct hashmap *hashmap_new(size_t elsize, size_t cap, uint64_t seed0,
uint64_t seed1,
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b, void *udata),
void (*elfree)(void *item),
void *udata)
{
return hashmap_new_with_allocator(NULL, NULL, NULL, elsize, cap, seed0,
seed1, hash, compare, elfree, udata);
}
static void free_elements(struct hashmap *map) {
if (map->elfree) {
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib) map->elfree(bucket_item(bucket));
}
}
}
// hashmap_clear quickly clears the map.
// Every item is called with the element-freeing function given in hashmap_new,
// if present, to free any data referenced in the elements of the hashmap.
// When the update_cap is provided, the map's capacity will be updated to match
// the currently number of allocated buckets. This is an optimization to ensure
// that this operation does not perform any allocations.
void hashmap_clear(struct hashmap *map, bool update_cap) {
map->count = 0;
free_elements(map);
if (update_cap) {
map->cap = map->nbuckets;
} else if (map->nbuckets != map->cap) {
void *new_buckets = map->malloc(map->bucketsz*map->cap);
if (new_buckets) {
map->free(map->buckets);
map->buckets = new_buckets;
}
map->nbuckets = map->cap;
}
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
map->mask = map->nbuckets-1;
map->growat = map->nbuckets*0.75;
map->shrinkat = map->nbuckets*0.10;
}
static bool resize0(struct hashmap *map, size_t new_cap) {
struct hashmap *map2 = hashmap_new_with_allocator(map->malloc, map->realloc,
map->free, map->elsize, new_cap, map->seed0, map->seed1, map->hash,
map->compare, map->elfree, map->udata);
if (!map2) return false;
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *entry = bucket_at(map, i);
if (!entry->dib) {
continue;
}
entry->dib = 1;
size_t j = entry->hash & map2->mask;
while(1) {
struct bucket *bucket = bucket_at(map2, j);
if (bucket->dib == 0) {
memcpy(bucket, entry, map->bucketsz);
break;
}
if (bucket->dib < entry->dib) {
memcpy(map2->spare, bucket, map->bucketsz);
memcpy(bucket, entry, map->bucketsz);
memcpy(entry, map2->spare, map->bucketsz);
}
j = (j + 1) & map2->mask;
entry->dib += 1;
}
}
map->free(map->buckets);
map->buckets = map2->buckets;
map->nbuckets = map2->nbuckets;
map->mask = map2->mask;
map->growat = map2->growat;
map->shrinkat = map2->shrinkat;
map->free(map2);
return true;
}
static bool resize(struct hashmap *map, size_t new_cap) {
return resize0(map, new_cap);
}
// hashmap_set_with_hash works like hashmap_set but you provide your
// own hash. The 'hash' callback provided to the hashmap_new function
// will not be called
const void *hashmap_set_with_hash(struct hashmap *map, const void *item,
uint64_t hash)
{
hash = clip_hash(hash);
map->oom = false;
if (map->count == map->growat) {
if (!resize(map, map->nbuckets*(1<<map->growpower))) {
map->oom = true;
return NULL;
}
}
struct bucket *entry = map->edata;
entry->hash = hash;
entry->dib = 1;
void *eitem = bucket_item(entry);
memcpy(eitem, item, map->elsize);
void *bitem;
size_t i = entry->hash & map->mask;
while(1) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib == 0) {
memcpy(bucket, entry, map->bucketsz);
map->count++;
return NULL;
}
bitem = bucket_item(bucket);
if (entry->hash == bucket->hash && (!map->compare ||
map->compare(eitem, bitem, map->udata) == 0))
{
memcpy(map->spare, bitem, map->elsize);
memcpy(bitem, eitem, map->elsize);
return map->spare;
}
if (bucket->dib < entry->dib) {
memcpy(map->spare, bucket, map->bucketsz);
memcpy(bucket, entry, map->bucketsz);
memcpy(entry, map->spare, map->bucketsz);
eitem = bucket_item(entry);
}
i = (i + 1) & map->mask;
entry->dib += 1;
}
}
// hashmap_set inserts or replaces an item in the hash map. If an item is
// replaced then it is returned otherwise NULL is returned. This operation
// may allocate memory. If the system is unable to allocate additional
// memory then NULL is returned and hashmap_oom() returns true.
const void *hashmap_set(struct hashmap *map, const void *item) {
return hashmap_set_with_hash(map, item, get_hash(map, item));
}
// hashmap_get_with_hash works like hashmap_get but you provide your
// own hash. The 'hash' callback provided to the hashmap_new function
// will not be called
const void *hashmap_get_with_hash(struct hashmap *map, const void *key,
uint64_t hash)
{
hash = clip_hash(hash);
size_t i = hash & map->mask;
while(1) {
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) return NULL;
if (bucket->hash == hash) {
void *bitem = bucket_item(bucket);
if (!map->compare || map->compare(key, bitem, map->udata) == 0) {
return bitem;
}
}
i = (i + 1) & map->mask;
}
}
// hashmap_get returns the item based on the provided key. If the item is not
// found then NULL is returned.
const void *hashmap_get(struct hashmap *map, const void *key) {
return hashmap_get_with_hash(map, key, get_hash(map, key));
}
// hashmap_probe returns the item in the bucket at position or NULL if an item
// is not set for that bucket. The position is 'moduloed' by the number of
// buckets in the hashmap.
const void *hashmap_probe(struct hashmap *map, uint64_t position) {
size_t i = position & map->mask;
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
return bucket_item(bucket);
}
// hashmap_delete_with_hash works like hashmap_delete but you provide your
// own hash. The 'hash' callback provided to the hashmap_new function
// will not be called
const void *hashmap_delete_with_hash(struct hashmap *map, const void *key,
uint64_t hash)
{
hash = clip_hash(hash);
map->oom = false;
size_t i = hash & map->mask;
while(1) {
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
void *bitem = bucket_item(bucket);
if (bucket->hash == hash && (!map->compare ||
map->compare(key, bitem, map->udata) == 0))
{
memcpy(map->spare, bitem, map->elsize);
bucket->dib = 0;
while(1) {
struct bucket *prev = bucket;
i = (i + 1) & map->mask;
bucket = bucket_at(map, i);
if (bucket->dib <= 1) {
prev->dib = 0;
break;
}
memcpy(prev, bucket, map->bucketsz);
prev->dib--;
}
map->count--;
if (map->nbuckets > map->cap && map->count <= map->shrinkat) {
// Ignore the return value. It's ok for the resize operation to
// fail to allocate enough memory because a shrink operation
// does not change the integrity of the data.
resize(map, map->nbuckets/2);
}
return map->spare;
}
i = (i + 1) & map->mask;
}
}
// hashmap_delete removes an item from the hash map and returns it. If the
// item is not found then NULL is returned.
const void *hashmap_delete(struct hashmap *map, const void *key) {
return hashmap_delete_with_hash(map, key, get_hash(map, key));
}
// hashmap_count returns the number of items in the hash map.
size_t hashmap_count(struct hashmap *map) {
return map->count;
}
// hashmap_free frees the hash map
// Every item is called with the element-freeing function given in hashmap_new,
// if present, to free any data referenced in the elements of the hashmap.
void hashmap_free(struct hashmap *map) {
if (!map) return;
free_elements(map);
map->free(map->buckets);
map->free(map);
}
// hashmap_oom returns true if the last hashmap_set() call failed due to the
// system being out of memory.
bool hashmap_oom(struct hashmap *map) {
return map->oom;
}
// hashmap_scan iterates over all items in the hash map
// Param `iter` can return false to stop iteration early.
// Returns false if the iteration has been stopped early.
bool hashmap_scan(struct hashmap *map,
bool (*iter)(const void *item, void *udata), void *udata)
{
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib && !iter(bucket_item(bucket), udata)) {
return false;
}
}
return true;
}
// hashmap_iter iterates one key at a time yielding a reference to an
// entry at each iteration. Useful to write simple loops and avoid writing
// dedicated callbacks and udata structures, as in hashmap_scan.
//
// map is a hash map handle. i is a pointer to a size_t cursor that
// should be initialized to 0 at the beginning of the loop. item is a void
// pointer pointer that is populated with the retrieved item. Note that this
// is NOT a copy of the item stored in the hash map and can be directly
// modified.
//
// Note that if hashmap_delete() is called on the hashmap being iterated,
// the buckets are rearranged and the iterator must be reset to 0, otherwise
// unexpected results may be returned after deletion.
//
// This function has not been tested for thread safety.
//
// The function returns true if an item was retrieved; false if the end of the
// iteration has been reached.
bool hashmap_iter(struct hashmap *map, size_t *i, void **item) {
struct bucket *bucket;
do {
if (*i >= map->nbuckets) return false;
bucket = bucket_at(map, *i);
(*i)++;
} while (!bucket->dib);
*item = bucket_item(bucket);
return true;
}
//-----------------------------------------------------------------------------
// SipHash reference C implementation
//
// Copyright (c) 2012-2016 Jean-Philippe Aumasson
// <jeanphilippe.aumasson@gmail.com>
// Copyright (c) 2012-2014 Daniel J. Bernstein <djb@cr.yp.to>
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related and neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this software. If not, see
// <http://creativecommons.org/publicdomain/zero/1.0/>.
//
// default: SipHash-2-4
//-----------------------------------------------------------------------------
static uint64_t SIP64(const uint8_t *in, const size_t inlen, uint64_t seed0,
uint64_t seed1)
{
#define U8TO64_LE(p) \
{ (((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | \
((uint64_t)((p)[2]) << 16) | ((uint64_t)((p)[3]) << 24) | \
((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \
((uint64_t)((p)[6]) << 48) | ((uint64_t)((p)[7]) << 56)) }
#define U64TO8_LE(p, v) \
{ U32TO8_LE((p), (uint32_t)((v))); \
U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); }
#define U32TO8_LE(p, v) \
{ (p)[0] = (uint8_t)((v)); \
(p)[1] = (uint8_t)((v) >> 8); \
(p)[2] = (uint8_t)((v) >> 16); \
(p)[3] = (uint8_t)((v) >> 24); }
#define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b))))
#define SIPROUND \
{ v0 += v1; v1 = ROTL(v1, 13); \
v1 ^= v0; v0 = ROTL(v0, 32); \
v2 += v3; v3 = ROTL(v3, 16); \
v3 ^= v2; \
v0 += v3; v3 = ROTL(v3, 21); \
v3 ^= v0; \
v2 += v1; v1 = ROTL(v1, 17); \
v1 ^= v2; v2 = ROTL(v2, 32); }
uint64_t k0 = U8TO64_LE((uint8_t*)&seed0);
uint64_t k1 = U8TO64_LE((uint8_t*)&seed1);
uint64_t v3 = UINT64_C(0x7465646279746573) ^ k1;
uint64_t v2 = UINT64_C(0x6c7967656e657261) ^ k0;
uint64_t v1 = UINT64_C(0x646f72616e646f6d) ^ k1;
uint64_t v0 = UINT64_C(0x736f6d6570736575) ^ k0;
const uint8_t *end = in + inlen - (inlen % sizeof(uint64_t));
for (; in != end; in += 8) {
uint64_t m = U8TO64_LE(in);
v3 ^= m;
SIPROUND; SIPROUND;
v0 ^= m;
}
const int left = inlen & 7;
uint64_t b = ((uint64_t)inlen) << 56;
switch (left) {
case 7: b |= ((uint64_t)in[6]) << 48; /* fall through */
case 6: b |= ((uint64_t)in[5]) << 40; /* fall through */
case 5: b |= ((uint64_t)in[4]) << 32; /* fall through */
case 4: b |= ((uint64_t)in[3]) << 24; /* fall through */
case 3: b |= ((uint64_t)in[2]) << 16; /* fall through */
case 2: b |= ((uint64_t)in[1]) << 8; /* fall through */
case 1: b |= ((uint64_t)in[0]); break;
case 0: break;
}
v3 ^= b;
SIPROUND; SIPROUND;
v0 ^= b;
v2 ^= 0xff;
SIPROUND; SIPROUND; SIPROUND; SIPROUND;
b = v0 ^ v1 ^ v2 ^ v3;
uint64_t out = 0;
U64TO8_LE((uint8_t*)&out, b);
return out;
}
//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
//
// Murmur3_86_128
//-----------------------------------------------------------------------------
static uint64_t MM86128(const void *key, const int len, uint32_t seed) {
#define ROTL32(x, r) ((x << r) | (x >> (32 - r)))
#define FMIX32(h) h^=h>>16; h*=0x85ebca6b; h^=h>>13; h*=0xc2b2ae35; h^=h>>16;
const uint8_t * data = (const uint8_t*)key;
const int nblocks = len / 16;
uint32_t h1 = seed;
uint32_t h2 = seed;
uint32_t h3 = seed;
uint32_t h4 = seed;
uint32_t c1 = 0x239b961b;
uint32_t c2 = 0xab0e9789;
uint32_t c3 = 0x38b34ae5;
uint32_t c4 = 0xa1e38b93;
const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
for (int i = -nblocks; i; i++) {
uint32_t k1 = blocks[i*4+0];
uint32_t k2 = blocks[i*4+1];
uint32_t k3 = blocks[i*4+2];
uint32_t k4 = blocks[i*4+3];
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
}
const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
uint32_t k4 = 0;
switch(len & 15) {
case 15: k4 ^= tail[14] << 16; /* fall through */
case 14: k4 ^= tail[13] << 8; /* fall through */
case 13: k4 ^= tail[12] << 0;
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
/* fall through */
case 12: k3 ^= tail[11] << 24; /* fall through */
case 11: k3 ^= tail[10] << 16; /* fall through */
case 10: k3 ^= tail[ 9] << 8; /* fall through */
case 9: k3 ^= tail[ 8] << 0;
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
/* fall through */
case 8: k2 ^= tail[ 7] << 24; /* fall through */
case 7: k2 ^= tail[ 6] << 16; /* fall through */
case 6: k2 ^= tail[ 5] << 8; /* fall through */
case 5: k2 ^= tail[ 4] << 0;
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
/* fall through */
case 4: k1 ^= tail[ 3] << 24; /* fall through */
case 3: k1 ^= tail[ 2] << 16; /* fall through */
case 2: k1 ^= tail[ 1] << 8; /* fall through */
case 1: k1 ^= tail[ 0] << 0;
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
/* fall through */
};
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
FMIX32(h1); FMIX32(h2); FMIX32(h3); FMIX32(h4);
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
return (((uint64_t)h2)<<32)|h1;
}
//-----------------------------------------------------------------------------
// xxHash Library
// Copyright (c) 2012-2021 Yann Collet
// All rights reserved.
//
// BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
//
// xxHash3
//-----------------------------------------------------------------------------
#define XXH_PRIME_1 11400714785074694791ULL
#define XXH_PRIME_2 14029467366897019727ULL
#define XXH_PRIME_3 1609587929392839161ULL
#define XXH_PRIME_4 9650029242287828579ULL
#define XXH_PRIME_5 2870177450012600261ULL
static uint64_t XXH_read64(const void* memptr) {
uint64_t val;
memcpy(&val, memptr, sizeof(val));
return val;
}
static uint32_t XXH_read32(const void* memptr) {
uint32_t val;
memcpy(&val, memptr, sizeof(val));
return val;
}
static uint64_t XXH_rotl64(uint64_t x, int r) {
return (x << r) | (x >> (64 - r));
}
static uint64_t xxh3(const void* data, size_t len, uint64_t seed) {
const uint8_t* p = (const uint8_t*)data;
const uint8_t* const end = p + len;
uint64_t h64;
if (len >= 32) {
const uint8_t* const limit = end - 32;
uint64_t v1 = seed + XXH_PRIME_1 + XXH_PRIME_2;
uint64_t v2 = seed + XXH_PRIME_2;
uint64_t v3 = seed + 0;
uint64_t v4 = seed - XXH_PRIME_1;
do {
v1 += XXH_read64(p) * XXH_PRIME_2;
v1 = XXH_rotl64(v1, 31);
v1 *= XXH_PRIME_1;
v2 += XXH_read64(p + 8) * XXH_PRIME_2;
v2 = XXH_rotl64(v2, 31);
v2 *= XXH_PRIME_1;
v3 += XXH_read64(p + 16) * XXH_PRIME_2;
v3 = XXH_rotl64(v3, 31);
v3 *= XXH_PRIME_1;
v4 += XXH_read64(p + 24) * XXH_PRIME_2;
v4 = XXH_rotl64(v4, 31);
v4 *= XXH_PRIME_1;
p += 32;
} while (p <= limit);
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) +
XXH_rotl64(v4, 18);
v1 *= XXH_PRIME_2;
v1 = XXH_rotl64(v1, 31);
v1 *= XXH_PRIME_1;
h64 ^= v1;
h64 = h64 * XXH_PRIME_1 + XXH_PRIME_4;
v2 *= XXH_PRIME_2;
v2 = XXH_rotl64(v2, 31);
v2 *= XXH_PRIME_1;
h64 ^= v2;
h64 = h64 * XXH_PRIME_1 + XXH_PRIME_4;
v3 *= XXH_PRIME_2;
v3 = XXH_rotl64(v3, 31);
v3 *= XXH_PRIME_1;
h64 ^= v3;
h64 = h64 * XXH_PRIME_1 + XXH_PRIME_4;
v4 *= XXH_PRIME_2;
v4 = XXH_rotl64(v4, 31);
v4 *= XXH_PRIME_1;
h64 ^= v4;
h64 = h64 * XXH_PRIME_1 + XXH_PRIME_4;
}
else {
h64 = seed + XXH_PRIME_5;
}
h64 += (uint64_t)len;
while (p + 8 <= end) {
uint64_t k1 = XXH_read64(p);
k1 *= XXH_PRIME_2;
k1 = XXH_rotl64(k1, 31);
k1 *= XXH_PRIME_1;
h64 ^= k1;
h64 = XXH_rotl64(h64, 27) * XXH_PRIME_1 + XXH_PRIME_4;
p += 8;
}
if (p + 4 <= end) {
h64 ^= (uint64_t)(XXH_read32(p)) * XXH_PRIME_1;
h64 = XXH_rotl64(h64, 23) * XXH_PRIME_2 + XXH_PRIME_3;
p += 4;
}
while (p < end) {
h64 ^= (*p) * XXH_PRIME_5;
h64 = XXH_rotl64(h64, 11) * XXH_PRIME_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= XXH_PRIME_2;
h64 ^= h64 >> 29;
h64 *= XXH_PRIME_3;
h64 ^= h64 >> 32;
return h64;
}
// hashmap_sip returns a hash value for `data` using SipHash-2-4.
uint64_t hashmap_sip(const void *data, size_t len, uint64_t seed0,
uint64_t seed1)
{
return SIP64((uint8_t*)data, len, seed0, seed1);
}
// hashmap_murmur returns a hash value for `data` using Murmur3_86_128.
uint64_t hashmap_murmur(const void *data, size_t len, uint64_t seed0,
uint64_t seed1)
{
(void)seed1;
return MM86128(data, len, seed0);
}
uint64_t hashmap_xxhash3(const void *data, size_t len, uint64_t seed0,
uint64_t seed1)
{
(void)seed1;
return xxh3(data, len ,seed0);
}
//==============================================================================
// TESTS AND BENCHMARKS
// $ cc -DHASHMAP_TEST hashmap.c && ./a.out # run tests
// $ cc -DHASHMAP_TEST -O3 hashmap.c && BENCH=1 ./a.out # run benchmarks
//==============================================================================
#ifdef HASHMAP_TEST
static size_t deepcount(struct hashmap *map) {
size_t count = 0;
for (size_t i = 0; i < map->nbuckets; i++) {
if (bucket_at(map, i)->dib) {
count++;
}
}
return count;
}
#ifdef __GNUC__
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wunknown-warning-option"
#pragma GCC diagnostic ignored "-Wcompound-token-split-by-macro"
#pragma GCC diagnostic ignored "-Wgnu-statement-expression-from-macro-expansion"
#endif
#ifdef __GNUC__
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <assert.h>
#include <stdio.h>
#include "hashmap.h"
static bool rand_alloc_fail = false;
static int rand_alloc_fail_odds = 3; // 1 in 3 chance malloc will fail.
static uintptr_t total_allocs = 0;
static uintptr_t total_mem = 0;
static void *xmalloc(size_t size) {
if (rand_alloc_fail && rand()%rand_alloc_fail_odds == 0) {
return NULL;
}
void *mem = malloc(sizeof(uintptr_t)+size);
assert(mem);
*(uintptr_t*)mem = size;
total_allocs++;
total_mem += size;
return (char*)mem+sizeof(uintptr_t);
}
static void xfree(void *ptr) {
if (ptr) {
total_mem -= *(uintptr_t*)((char*)ptr-sizeof(uintptr_t));
free((char*)ptr-sizeof(uintptr_t));
total_allocs--;
}
}
static void shuffle(void *array, size_t numels, size_t elsize) {
char tmp[elsize];
char *arr = array;
for (size_t i = 0; i < numels - 1; i++) {
int j = i + rand() / (RAND_MAX / (numels - i) + 1);
memcpy(tmp, arr + j * elsize, elsize);
memcpy(arr + j * elsize, arr + i * elsize, elsize);
memcpy(arr + i * elsize, tmp, elsize);
}
}
static bool iter_ints(const void *item, void *udata) {
int *vals = *(int**)udata;
vals[*(int*)item] = 1;
return true;
}
static int compare_ints_udata(const void *a, const void *b, void *udata) {
return *(int*)a - *(int*)b;
}
static int compare_strs(const void *a, const void *b, void *udata) {
return strcmp(*(char**)a, *(char**)b);
}
static uint64_t hash_int(const void *item, uint64_t seed0, uint64_t seed1) {
return hashmap_xxhash3(item, sizeof(int), seed0, seed1);
// return hashmap_sip(item, sizeof(int), seed0, seed1);
// return hashmap_murmur(item, sizeof(int), seed0, seed1);
}
static uint64_t hash_str(const void *item, uint64_t seed0, uint64_t seed1) {
return hashmap_xxhash3(*(char**)item, strlen(*(char**)item), seed0, seed1);
// return hashmap_sip(*(char**)item, strlen(*(char**)item), seed0, seed1);
// return hashmap_murmur(*(char**)item, strlen(*(char**)item), seed0, seed1);
}
static void free_str(void *item) {
xfree(*(char**)item);
}
static void all(void) {
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
int N = getenv("N")?atoi(getenv("N")):2000;
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
srand(seed);
rand_alloc_fail = true;
// test sip and murmur hashes
assert(hashmap_sip("hello", 5, 1, 2) == 2957200328589801622);
assert(hashmap_murmur("hello", 5, 1, 2) == 1682575153221130884);
assert(hashmap_xxhash3("hello", 5, 1, 2) == 2584346877953614258);
int *vals;
while (!(vals = xmalloc(N * sizeof(int)))) {}
for (int i = 0; i < N; i++) {
vals[i] = i;
}
struct hashmap *map;
while (!(map = hashmap_new(sizeof(int), 0, seed, seed,
hash_int, compare_ints_udata, NULL, NULL))) {}
shuffle(vals, N, sizeof(int));
for (int i = 0; i < N; i++) {
// // printf("== %d ==\n", vals[i]);
assert(map->count == (size_t)i);
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
const int *v;
assert(!hashmap_get(map, &vals[i]));
assert(!hashmap_delete(map, &vals[i]));
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
for (int j = 0; j < i; j++) {
v = hashmap_get(map, &vals[j]);
assert(v && *v == vals[j]);
}
while (true) {
v = hashmap_set(map, &vals[i]);
if (!v) {
assert(hashmap_oom(map));
continue;
} else {
assert(!hashmap_oom(map));
assert(v && *v == vals[i]);
break;
}
}
v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
assert(!hashmap_get(map, &vals[i]));
assert(!hashmap_delete(map, &vals[i]));
assert(!hashmap_set(map, &vals[i]));
assert(map->count == (size_t)(i+1));
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
}
int *vals2;
while (!(vals2 = xmalloc(N * sizeof(int)))) {}
memset(vals2, 0, N * sizeof(int));
assert(hashmap_scan(map, iter_ints, &vals2));
// Test hashmap_iter. This does the same as hashmap_scan above.
size_t iter = 0;
void *iter_val;
while (hashmap_iter (map, &iter, &iter_val)) {
assert (iter_ints(iter_val, &vals2));
}
for (int i = 0; i < N; i++) {
assert(vals2[i] == 1);
}
xfree(vals2);
shuffle(vals, N, sizeof(int));
for (int i = 0; i < N; i++) {
const int *v;
v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
assert(!hashmap_get(map, &vals[i]));
assert(map->count == (size_t)(N-i-1));
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
for (int j = N-1; j > i; j--) {
v = hashmap_get(map, &vals[j]);
assert(v && *v == vals[j]);
}
}
for (int i = 0; i < N; i++) {
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
}
assert(map->count != 0);
size_t prev_cap = map->cap;
hashmap_clear(map, true);
assert(prev_cap < map->cap);
assert(map->count == 0);
for (int i = 0; i < N; i++) {
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
}
prev_cap = map->cap;
hashmap_clear(map, false);
assert(prev_cap == map->cap);
hashmap_free(map);
xfree(vals);
while (!(map = hashmap_new(sizeof(char*), 0, seed, seed,
hash_str, compare_strs, free_str, NULL)));
for (int i = 0; i < N; i++) {
char *str;
while (!(str = xmalloc(16)));
snprintf(str, 16, "s%i", i);
while(!hashmap_set(map, &str));
}
hashmap_clear(map, false);
assert(hashmap_count(map) == 0);
for (int i = 0; i < N; i++) {
char *str;
while (!(str = xmalloc(16)));
snprintf(str, 16, "s%i", i);
while(!hashmap_set(map, &str));
}
hashmap_free(map);
if (total_allocs != 0) {
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
exit(1);
}
}
#define bench(name, N, code) {{ \
if (strlen(name) > 0) { \
printf("%-14s ", name); \
} \
size_t tmem = total_mem; \
size_t tallocs = total_allocs; \
uint64_t bytes = 0; \
clock_t begin = clock(); \
for (int i = 0; i < N; i++) { \
(code); \
} \
clock_t end = clock(); \
double elapsed_secs = (double)(end - begin) / CLOCKS_PER_SEC; \
double bytes_sec = (double)bytes/elapsed_secs; \
printf("%d ops in %.3f secs, %.0f ns/op, %.0f op/sec", \
N, elapsed_secs, \
elapsed_secs/(double)N*1e9, \
(double)N/elapsed_secs \
); \
if (bytes > 0) { \
printf(", %.1f GB/sec", bytes_sec/1024/1024/1024); \
} \
if (total_mem > tmem) { \
size_t used_mem = total_mem-tmem; \
printf(", %.2f bytes/op", (double)used_mem/N); \
} \
if (total_allocs > tallocs) { \
size_t used_allocs = total_allocs-tallocs; \
printf(", %.2f allocs/op", (double)used_allocs/N); \
} \
printf("\n"); \
}}
static void benchmarks(void) {
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
int N = getenv("N")?atoi(getenv("N")):5000000;
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
srand(seed);
int *vals = xmalloc(N * sizeof(int));
for (int i = 0; i < N; i++) {
vals[i] = i;
}
shuffle(vals, N, sizeof(int));
struct hashmap *map;
shuffle(vals, N, sizeof(int));
map = hashmap_new(sizeof(int), 0, seed, seed, hash_int, compare_ints_udata,
NULL, NULL);
bench("set", N, {
const int *v = hashmap_set(map, &vals[i]);
assert(!v);
})
shuffle(vals, N, sizeof(int));
bench("get", N, {
const int *v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
})
shuffle(vals, N, sizeof(int));
bench("delete", N, {
const int *v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
})
hashmap_free(map);
map = hashmap_new(sizeof(int), N, seed, seed, hash_int, compare_ints_udata,
NULL, NULL);
bench("set (cap)", N, {
const int *v = hashmap_set(map, &vals[i]);
assert(!v);
})
shuffle(vals, N, sizeof(int));
bench("get (cap)", N, {
const int *v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
})
shuffle(vals, N, sizeof(int));
bench("delete (cap)" , N, {
const int *v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
})
hashmap_free(map);
xfree(vals);
if (total_allocs != 0) {
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
exit(1);
}
}
int main(void) {
hashmap_set_allocator(xmalloc, xfree);
if (getenv("BENCH")) {
printf("Running hashmap.c benchmarks...\n");
benchmarks();
} else {
printf("Running hashmap.c tests...\n");
all();
printf("PASSED\n");
}
}
#endif