#include "mm.h" /*块不太小 */ #define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( xHeapStructSize << 1 ) ) /* Assumes 8bit bytes!假设为8位 */ #define heapBITS_PER_BYTE ( ( size_t ) 8 ) /* Max value that fits in a size_t type. size_t最大值 */ #define heapSIZE_MAX ( ~( ( size_t ) 0 ) ) /* Check if multiplying a and b will result in overflow. 检查a 和B 相乘是否会溢出*/ #define heapMULTIPLY_WILL_OVERFLOW( a, b ) ( ( ( a ) > 0 ) && ( ( b ) > ( heapSIZE_MAX / ( a ) ) ) ) /* Check if adding a and b will result in overflow. 检查a 和b相加是否会溢出*/ #define heapADD_WILL_OVERFLOW( a, b ) ( ( a ) > ( heapSIZE_MAX - ( b ) ) ) /* BlockLink_t结构中的xBlockSize成员的最高有效位(MSB)用于追踪块的分配状态。 当设置了BlockLink_t结构中的xBlockSize成员的MSB时,该块被归属于应用程序。 而当该位为空闲时,该块仍然是空闲堆空间的一部分。 */ #define heapBLOCK_ALLOCATED_BITMASK ( ( ( size_t ) 1 ) << ( ( sizeof( size_t ) * heapBITS_PER_BYTE ) - 1 ) ) //内存对齐使用 #define heapBLOCK_SIZE_IS_VALID( xBlockSize ) ( ( ( xBlockSize ) & heapBLOCK_ALLOCATED_BITMASK ) == 0 ) #define heapBLOCK_IS_ALLOCATED( pxBlock ) ( ( ( pxBlock->xBlockSize ) & heapBLOCK_ALLOCATED_BITMASK ) != 0 ) #define heapALLOCATE_BLOCK( pxBlock ) ( ( pxBlock->xBlockSize ) |= heapBLOCK_ALLOCATED_BITMASK ) #define heapFREE_BLOCK( pxBlock ) ( ( pxBlock->xBlockSize ) &= ~heapBLOCK_ALLOCATED_BITMASK ) static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];//堆内存大小分配 typedef struct A_BLOCK_LINK { struct A_BLOCK_LINK * pxNextFreeBlock; /*<< The next free block in the list. 下一个空闲块*/ size_t xBlockSize; /*<< The size of the free block.空闲块的大小 */ } BlockLink_t; /* 将正在释放的内存块插入到空闲内存块列表中的正确位置。 如果内存块彼此相邻,被释放的块将与它前面的块和/或它后面的块合并。 */ static void prvInsertBlockIntoFreeList( BlockLink_t * pxBlockToInsert ); static void prvHeapInit( void ); /* 位于每个分配的内存块开头的结构的大小必须按正确的字节对齐。 */ static const size_t xHeapStructSize = ( sizeof( BlockLink_t ) + ( ( size_t ) ( portBYTE_ALIGNMENT - 1 ) ) ) & ~( ( size_t ) portBYTE_ALIGNMENT_MASK ); /* 创建两个列表链接来标记列表的开始和结束。*/ static BlockLink_t xStart; static BlockLink_t * pxEnd = NULL;//如果不是NULL就是已经初始化话内存了,这个很重要 /* 跟踪分配和释放内存的调用数量以及剩余空闲字节数,但没有说明碎片。* / */ static size_t xFreeBytesRemaining = 0U; static size_t xMinimumEverFreeBytesRemaining = 0U; static size_t xNumberOfSuccessfulAllocations = 0; static size_t xNumberOfSuccessfulFrees = 0; /*-----------------------------------------------------------*/ void * pvPortMalloc( size_t xWantedSize ) { BlockLink_t * pxBlock; BlockLink_t * pxPreviousBlock; BlockLink_t * pxNewBlockLink; void * pvReturn = NULL; size_t xAdditionalRequiredSize; { /* If this is the first call to malloc then the heap will require * initialisation to setup the list of free blocks. */ if( pxEnd == NULL ) { prvHeapInit(); } else { mtCOVERAGE_TEST_MARKER(); } if( xWantedSize > 0 ) { /* The wanted size must be increased so it can contain a BlockLink_t * structure in addition to the requested amount of bytes. Some * additional increment may also be needed for alignment. */ xAdditionalRequiredSize = xHeapStructSize + portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ); if( heapADD_WILL_OVERFLOW( xWantedSize, xAdditionalRequiredSize ) == 0 ) { xWantedSize += xAdditionalRequiredSize; } else { xWantedSize = 0; } } else { mtCOVERAGE_TEST_MARKER(); } /* Check the block size we are trying to allocate is not so large that the * top bit is set. The top bit of the block size member of the BlockLink_t * structure is used to determine who owns the block - the application or * the kernel, so it must be free. */ if( heapBLOCK_SIZE_IS_VALID( xWantedSize ) != 0 ) { if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) ) { /* Traverse the list from the start (lowest address) block until * one of adequate size is found. */ pxPreviousBlock = &xStart; pxBlock = xStart.pxNextFreeBlock; while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) ) { pxPreviousBlock = pxBlock; pxBlock = pxBlock->pxNextFreeBlock; } /* If the end marker was reached then a block of adequate size * was not found. */ if( pxBlock != pxEnd ) { /* Return the memory space pointed to - jumping over the * BlockLink_t structure at its start. */ pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize ); /* This block is being returned for use so must be taken out * of the list of free blocks. */ pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock; /* If the block is larger than required it can be split into * two. */ if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE ) { /* This block is to be split into two. Create a new * block following the number of bytes requested. The void * cast is used to prevent byte alignment warnings from the * compiler. */ pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize ); configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 ); /* Calculate the sizes of two blocks split from the * single block. */ pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize; pxBlock->xBlockSize = xWantedSize; /* Insert the new block into the list of free blocks. */ prvInsertBlockIntoFreeList( pxNewBlockLink ); } else { mtCOVERAGE_TEST_MARKER(); } xFreeBytesRemaining -= pxBlock->xBlockSize; if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining ) { xMinimumEverFreeBytesRemaining = xFreeBytesRemaining; } else { mtCOVERAGE_TEST_MARKER(); } /* The block is being returned - it is allocated and owned * by the application and has no "next" block. */ heapALLOCATE_BLOCK( pxBlock ); pxBlock->pxNextFreeBlock = NULL; xNumberOfSuccessfulAllocations++; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } traceMALLOC( pvReturn, xWantedSize ); } configASSERT( ( ( ( size_t ) pvReturn ) & ( size_t ) portBYTE_ALIGNMENT_MASK ) == 0 ); return pvReturn; } /*-----------------------------------------------------------*/ void vPortFree( void * pv ) { uint8_t * puc = ( uint8_t * ) pv; BlockLink_t * pxLink; if( pv != NULL ) { /* The memory being freed will have an BlockLink_t structure immediately * before it. */ puc -= xHeapStructSize; /* This casting is to keep the compiler from issuing warnings. */ pxLink = ( void * ) puc; configASSERT( heapBLOCK_IS_ALLOCATED( pxLink ) != 0 ); configASSERT( pxLink->pxNextFreeBlock == NULL ); if( heapBLOCK_IS_ALLOCATED( pxLink ) != 0 ) { if( pxLink->pxNextFreeBlock == NULL ) { /* The block is being returned to the heap - it is no longer * allocated. */ heapFREE_BLOCK( pxLink ); #if ( configHEAP_CLEAR_MEMORY_ON_FREE == 1 ) { ( void ) memset( puc + xHeapStructSize, 0, pxLink->xBlockSize - xHeapStructSize ); } #endif { /* Add this block to the list of free blocks. */ xFreeBytesRemaining += pxLink->xBlockSize; traceFREE( pv, pxLink->xBlockSize ); prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) ); xNumberOfSuccessfulFrees++; } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } } /*-----------------------------------------------------------*/ size_t xPortGetFreeHeapSize( void ) { return xFreeBytesRemaining; } /*-----------------------------------------------------------*/ size_t xPortGetMinimumEverFreeHeapSize( void ) { return xMinimumEverFreeBytesRemaining; } /*-----------------------------------------------------------*/ void vPortInitialiseBlocks( void ) { /* This just exists to keep the linker quiet. */ } /*-----------------------------------------------------------*/ void * pvPortCalloc( size_t xNum, size_t xSize ) { void * pv = NULL; if( heapMULTIPLY_WILL_OVERFLOW( xNum, xSize ) == 0 ) { pv = pvPortMalloc( xNum * xSize ); if( pv != NULL ) { ( void ) memset( pv, 0, xNum * xSize ); } } return pv; } /*-----------------------------------------------------------*/ static void prvHeapInit( void ) /* PRIVILEGED_FUNCTION */ { BlockLink_t * pxFirstFreeBlock; uint8_t * pucAlignedHeap; portPOINTER_SIZE_TYPE uxAddress; size_t xTotalHeapSize = configTOTAL_HEAP_SIZE; /* Ensure the heap starts on a correctly aligned boundary. */ uxAddress = ( portPOINTER_SIZE_TYPE ) ucHeap; if( ( uxAddress & portBYTE_ALIGNMENT_MASK ) != 0 ) { uxAddress += ( portBYTE_ALIGNMENT - 1 ); uxAddress &= ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ); xTotalHeapSize -= uxAddress - ( portPOINTER_SIZE_TYPE ) ucHeap; } pucAlignedHeap = ( uint8_t * ) uxAddress; /* xStart is used to hold a pointer to the first item in the list of free * blocks. The void cast is used to prevent compiler warnings. */ xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap; xStart.xBlockSize = ( size_t ) 0; /* pxEnd is used to mark the end of the list of free blocks and is inserted * at the end of the heap space. */ uxAddress = ( ( portPOINTER_SIZE_TYPE ) pucAlignedHeap ) + xTotalHeapSize; uxAddress -= xHeapStructSize; uxAddress &= ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ); pxEnd = ( BlockLink_t * ) uxAddress; pxEnd->xBlockSize = 0; pxEnd->pxNextFreeBlock = NULL; /* To start with there is a single free block that is sized to take up the * entire heap space, minus the space taken by pxEnd. */ pxFirstFreeBlock = ( BlockLink_t * ) pucAlignedHeap; pxFirstFreeBlock->xBlockSize = ( size_t ) ( uxAddress - ( portPOINTER_SIZE_TYPE ) pxFirstFreeBlock ); pxFirstFreeBlock->pxNextFreeBlock = pxEnd; /* Only one block exists - and it covers the entire usable heap space. */ xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize; xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize; } /*-----------------------------------------------------------*/ static void prvInsertBlockIntoFreeList( BlockLink_t * pxBlockToInsert ) /* PRIVILEGED_FUNCTION */ { BlockLink_t * pxIterator; uint8_t * puc; /* Iterate through the list until a block is found that has a higher address * than the block being inserted. */ for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock ) { /* Nothing to do here, just iterate to the right position. */ } /* Do the block being inserted, and the block it is being inserted after * make a contiguous block of memory? */ puc = ( uint8_t * ) pxIterator; if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert ) { pxIterator->xBlockSize += pxBlockToInsert->xBlockSize; pxBlockToInsert = pxIterator; } else { mtCOVERAGE_TEST_MARKER(); } /* Do the block being inserted, and the block it is being inserted before * make a contiguous block of memory? */ puc = ( uint8_t * ) pxBlockToInsert; if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock ) { if( pxIterator->pxNextFreeBlock != pxEnd ) { /* Form one big block from the two blocks. */ pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize; pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock; } else { pxBlockToInsert->pxNextFreeBlock = pxEnd; } } else { pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock; } /* If the block being inserted plugged a gab, so was merged with the block * before and the block after, then it's pxNextFreeBlock pointer will have * already been set, and should not be set here as that would make it point * to itself. */ if( pxIterator != pxBlockToInsert ) { pxIterator->pxNextFreeBlock = pxBlockToInsert; } else { mtCOVERAGE_TEST_MARKER(); } } /*-----------------------------------------------------------*/ void vPortGetHeapStats( HeapStats_t * pxHeapStats ) { BlockLink_t * pxBlock; size_t xBlocks = 0, xMaxSize = 0, xMinSize = portMAX_DELAY; /* portMAX_DELAY used as a portable way of getting the maximum value. */ { pxBlock = xStart.pxNextFreeBlock; /* pxBlock will be NULL if the heap has not been initialised. The heap * is initialised automatically when the first allocation is made. */ if( pxBlock != NULL ) { while( pxBlock != pxEnd ) { /* Increment the number of blocks and record the largest block seen * so far. */ xBlocks++; if( pxBlock->xBlockSize > xMaxSize ) { xMaxSize = pxBlock->xBlockSize; } if( pxBlock->xBlockSize < xMinSize ) { xMinSize = pxBlock->xBlockSize; } /* Move to the next block in the chain until the last block is * reached. */ pxBlock = pxBlock->pxNextFreeBlock; } } } pxHeapStats->xSizeOfLargestFreeBlockInBytes = xMaxSize; pxHeapStats->xSizeOfSmallestFreeBlockInBytes = xMinSize; pxHeapStats->xNumberOfFreeBlocks = xBlocks; { pxHeapStats->xAvailableHeapSpaceInBytes = xFreeBytesRemaining; pxHeapStats->xNumberOfSuccessfulAllocations = xNumberOfSuccessfulAllocations; pxHeapStats->xNumberOfSuccessfulFrees = xNumberOfSuccessfulFrees; pxHeapStats->xMinimumEverFreeBytesRemaining = xMinimumEverFreeBytesRemaining; } } /*-----------------------------------------------------------*/