CELIS/STM32F10x_FWLib/src/stm32f10x_i2c.c

1332 lines
45 KiB
C
Raw Normal View History

/**
******************************************************************************
* @file stm32f10x_i2c.c
* @author MCD Application Team
* @version V3.5.0
* @date 11-March-2011
* @brief This file provides all the I2C firmware functions.
******************************************************************************
* @attention
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2>
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_i2c.h"
#include "stm32f10x_rcc.h"
/** @addtogroup STM32F10x_StdPeriph_Driver
* @{
*/
/** @defgroup I2C
* @brief I2C driver modules
* @{
*/
/** @defgroup I2C_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup I2C_Private_Defines
* @{
*/
/* I2C SPE mask */
#define CR1_PE_Set ((uint16_t)0x0001)
#define CR1_PE_Reset ((uint16_t)0xFFFE)
/* I2C START mask */
#define CR1_START_Set ((uint16_t)0x0100)
#define CR1_START_Reset ((uint16_t)0xFEFF)
/* I2C STOP mask */
#define CR1_STOP_Set ((uint16_t)0x0200)
#define CR1_STOP_Reset ((uint16_t)0xFDFF)
/* I2C ACK mask */
#define CR1_ACK_Set ((uint16_t)0x0400)
#define CR1_ACK_Reset ((uint16_t)0xFBFF)
/* I2C ENGC mask */
#define CR1_ENGC_Set ((uint16_t)0x0040)
#define CR1_ENGC_Reset ((uint16_t)0xFFBF)
/* I2C SWRST mask */
#define CR1_SWRST_Set ((uint16_t)0x8000)
#define CR1_SWRST_Reset ((uint16_t)0x7FFF)
/* I2C PEC mask */
#define CR1_PEC_Set ((uint16_t)0x1000)
#define CR1_PEC_Reset ((uint16_t)0xEFFF)
/* I2C ENPEC mask */
#define CR1_ENPEC_Set ((uint16_t)0x0020)
#define CR1_ENPEC_Reset ((uint16_t)0xFFDF)
/* I2C ENARP mask */
#define CR1_ENARP_Set ((uint16_t)0x0010)
#define CR1_ENARP_Reset ((uint16_t)0xFFEF)
/* I2C NOSTRETCH mask */
#define CR1_NOSTRETCH_Set ((uint16_t)0x0080)
#define CR1_NOSTRETCH_Reset ((uint16_t)0xFF7F)
/* I2C registers Masks */
#define CR1_CLEAR_Mask ((uint16_t)0xFBF5)
/* I2C DMAEN mask */
#define CR2_DMAEN_Set ((uint16_t)0x0800)
#define CR2_DMAEN_Reset ((uint16_t)0xF7FF)
/* I2C LAST mask */
#define CR2_LAST_Set ((uint16_t)0x1000)
#define CR2_LAST_Reset ((uint16_t)0xEFFF)
/* I2C FREQ mask */
#define CR2_FREQ_Reset ((uint16_t)0xFFC0)
/* I2C ADD0 mask */
#define OAR1_ADD0_Set ((uint16_t)0x0001)
#define OAR1_ADD0_Reset ((uint16_t)0xFFFE)
/* I2C ENDUAL mask */
#define OAR2_ENDUAL_Set ((uint16_t)0x0001)
#define OAR2_ENDUAL_Reset ((uint16_t)0xFFFE)
/* I2C ADD2 mask */
#define OAR2_ADD2_Reset ((uint16_t)0xFF01)
/* I2C F/S mask */
#define CCR_FS_Set ((uint16_t)0x8000)
/* I2C CCR mask */
#define CCR_CCR_Set ((uint16_t)0x0FFF)
/* I2C FLAG mask */
#define FLAG_Mask ((uint32_t)0x00FFFFFF)
/* I2C Interrupt Enable mask */
#define ITEN_Mask ((uint32_t)0x07000000)
/**
* @}
*/
/** @defgroup I2C_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup I2C_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup I2C_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup I2C_Private_Functions
* @{
*/
/**
* @brief Deinitializes the I2Cx peripheral registers to their default reset values.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @retval None
*/
void I2C_DeInit(I2C_TypeDef* I2Cx)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
if (I2Cx == I2C1)
{
/* Enable I2C1 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C1, ENABLE);
/* Release I2C1 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C1, DISABLE);
}
else
{
/* Enable I2C2 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C2, ENABLE);
/* Release I2C2 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C2, DISABLE);
}
}
/**
* @brief Initializes the I2Cx peripheral according to the specified
* parameters in the I2C_InitStruct.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_InitStruct: pointer to a I2C_InitTypeDef structure that
* contains the configuration information for the specified I2C peripheral.
* @retval None
*/
void I2C_Init(I2C_TypeDef* I2Cx, I2C_InitTypeDef* I2C_InitStruct)
{
uint16_t tmpreg = 0, freqrange = 0;
uint16_t result = 0x04;
uint32_t pclk1 = 8000000;
RCC_ClocksTypeDef rcc_clocks;
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_CLOCK_SPEED(I2C_InitStruct->I2C_ClockSpeed));
assert_param(IS_I2C_MODE(I2C_InitStruct->I2C_Mode));
assert_param(IS_I2C_DUTY_CYCLE(I2C_InitStruct->I2C_DutyCycle));
assert_param(IS_I2C_OWN_ADDRESS1(I2C_InitStruct->I2C_OwnAddress1));
assert_param(IS_I2C_ACK_STATE(I2C_InitStruct->I2C_Ack));
assert_param(IS_I2C_ACKNOWLEDGE_ADDRESS(I2C_InitStruct->I2C_AcknowledgedAddress));
/*---------------------------- I2Cx CR2 Configuration ------------------------*/
/* Get the I2Cx CR2 value */
tmpreg = I2Cx->CR2;
/* Clear frequency FREQ[5:0] bits */
tmpreg &= CR2_FREQ_Reset;
/* Get pclk1 frequency value */
RCC_GetClocksFreq(&rcc_clocks);
pclk1 = rcc_clocks.PCLK1_Frequency;
/* Set frequency bits depending on pclk1 value */
freqrange = (uint16_t)(pclk1 / 1000000);
tmpreg |= freqrange;
/* Write to I2Cx CR2 */
I2Cx->CR2 = tmpreg;
/*---------------------------- I2Cx CCR Configuration ------------------------*/
/* Disable the selected I2C peripheral to configure TRISE */
I2Cx->CR1 &= CR1_PE_Reset;
/* Reset tmpreg value */
/* Clear F/S, DUTY and CCR[11:0] bits */
tmpreg = 0;
/* Configure speed in standard mode */
if (I2C_InitStruct->I2C_ClockSpeed <= 100000)
{
/* Standard mode speed calculate */
result = (uint16_t)(pclk1 / (I2C_InitStruct->I2C_ClockSpeed << 1));
/* Test if CCR value is under 0x4*/
if (result < 0x04)
{
/* Set minimum allowed value */
result = 0x04;
}
/* Set speed value for standard mode */
tmpreg |= result;
/* Set Maximum Rise Time for standard mode */
I2Cx->TRISE = freqrange + 1;
}
/* Configure speed in fast mode */
else /*(I2C_InitStruct->I2C_ClockSpeed <= 400000)*/
{
if (I2C_InitStruct->I2C_DutyCycle == I2C_DutyCycle_2)
{
/* Fast mode speed calculate: Tlow/Thigh = 2 */
result = (uint16_t)(pclk1 / (I2C_InitStruct->I2C_ClockSpeed * 3));
}
else /*I2C_InitStruct->I2C_DutyCycle == I2C_DutyCycle_16_9*/
{
/* Fast mode speed calculate: Tlow/Thigh = 16/9 */
result = (uint16_t)(pclk1 / (I2C_InitStruct->I2C_ClockSpeed * 25));
/* Set DUTY bit */
result |= I2C_DutyCycle_16_9;
}
/* Test if CCR value is under 0x1*/
if ((result & CCR_CCR_Set) == 0)
{
/* Set minimum allowed value */
result |= (uint16_t)0x0001;
}
/* Set speed value and set F/S bit for fast mode */
tmpreg |= (uint16_t)(result | CCR_FS_Set);
/* Set Maximum Rise Time for fast mode */
I2Cx->TRISE = (uint16_t)(((freqrange * (uint16_t)300) / (uint16_t)1000) + (uint16_t)1);
}
/* Write to I2Cx CCR */
I2Cx->CCR = tmpreg;
/* Enable the selected I2C peripheral */
I2Cx->CR1 |= CR1_PE_Set;
/*---------------------------- I2Cx CR1 Configuration ------------------------*/
/* Get the I2Cx CR1 value */
tmpreg = I2Cx->CR1;
/* Clear ACK, SMBTYPE and SMBUS bits */
tmpreg &= CR1_CLEAR_Mask;
/* Configure I2Cx: mode and acknowledgement */
/* Set SMBTYPE and SMBUS bits according to I2C_Mode value */
/* Set ACK bit according to I2C_Ack value */
tmpreg |= (uint16_t)((uint32_t)I2C_InitStruct->I2C_Mode | I2C_InitStruct->I2C_Ack);
/* Write to I2Cx CR1 */
I2Cx->CR1 = tmpreg;
/*---------------------------- I2Cx OAR1 Configuration -----------------------*/
/* Set I2Cx Own Address1 and acknowledged address */
I2Cx->OAR1 = (I2C_InitStruct->I2C_AcknowledgedAddress | I2C_InitStruct->I2C_OwnAddress1);
}
/**
* @brief Fills each I2C_InitStruct member with its default value.
* @param I2C_InitStruct: pointer to an I2C_InitTypeDef structure which will be initialized.
* @retval None
*/
void I2C_StructInit(I2C_InitTypeDef* I2C_InitStruct)
{
/*---------------- Reset I2C init structure parameters values ----------------*/
/* initialize the I2C_ClockSpeed member */
I2C_InitStruct->I2C_ClockSpeed = 5000;
/* Initialize the I2C_Mode member */
I2C_InitStruct->I2C_Mode = I2C_Mode_I2C;
/* Initialize the I2C_DutyCycle member */
I2C_InitStruct->I2C_DutyCycle = I2C_DutyCycle_2;
/* Initialize the I2C_OwnAddress1 member */
I2C_InitStruct->I2C_OwnAddress1 = 0;
/* Initialize the I2C_Ack member */
I2C_InitStruct->I2C_Ack = I2C_Ack_Disable;
/* Initialize the I2C_AcknowledgedAddress member */
I2C_InitStruct->I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
}
/**
* @brief Enables or disables the specified I2C peripheral.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2Cx peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_Cmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected I2C peripheral */
I2Cx->CR1 |= CR1_PE_Set;
}
else
{
/* Disable the selected I2C peripheral */
I2Cx->CR1 &= CR1_PE_Reset;
}
}
/**
* @brief Enables or disables the specified I2C DMA requests.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2C DMA transfer.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_DMACmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected I2C DMA requests */
I2Cx->CR2 |= CR2_DMAEN_Set;
}
else
{
/* Disable the selected I2C DMA requests */
I2Cx->CR2 &= CR2_DMAEN_Reset;
}
}
/**
* @brief Specifies if the next DMA transfer will be the last one.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2C DMA last transfer.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_DMALastTransferCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Next DMA transfer is the last transfer */
I2Cx->CR2 |= CR2_LAST_Set;
}
else
{
/* Next DMA transfer is not the last transfer */
I2Cx->CR2 &= CR2_LAST_Reset;
}
}
/**
* @brief Generates I2Cx communication START condition.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2C START condition generation.
* This parameter can be: ENABLE or DISABLE.
* @retval None.
*/
void I2C_GenerateSTART(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Generate a START condition */
I2Cx->CR1 |= CR1_START_Set;
}
else
{
/* Disable the START condition generation */
I2Cx->CR1 &= CR1_START_Reset;
}
}
/**
* @brief Generates I2Cx communication STOP condition.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2C STOP condition generation.
* This parameter can be: ENABLE or DISABLE.
* @retval None.
*/
void I2C_GenerateSTOP(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Generate a STOP condition */
I2Cx->CR1 |= CR1_STOP_Set;
}
else
{
/* Disable the STOP condition generation */
I2Cx->CR1 &= CR1_STOP_Reset;
}
}
/**
* @brief Enables or disables the specified I2C acknowledge feature.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2C Acknowledgement.
* This parameter can be: ENABLE or DISABLE.
* @retval None.
*/
void I2C_AcknowledgeConfig(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the acknowledgement */
I2Cx->CR1 |= CR1_ACK_Set;
}
else
{
/* Disable the acknowledgement */
I2Cx->CR1 &= CR1_ACK_Reset;
}
}
/**
* @brief Configures the specified I2C own address2.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param Address: specifies the 7bit I2C own address2.
* @retval None.
*/
void I2C_OwnAddress2Config(I2C_TypeDef* I2Cx, uint8_t Address)
{
uint16_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
/* Get the old register value */
tmpreg = I2Cx->OAR2;
/* Reset I2Cx Own address2 bit [7:1] */
tmpreg &= OAR2_ADD2_Reset;
/* Set I2Cx Own address2 */
tmpreg |= (uint16_t)((uint16_t)Address & (uint16_t)0x00FE);
/* Store the new register value */
I2Cx->OAR2 = tmpreg;
}
/**
* @brief Enables or disables the specified I2C dual addressing mode.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2C dual addressing mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_DualAddressCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable dual addressing mode */
I2Cx->OAR2 |= OAR2_ENDUAL_Set;
}
else
{
/* Disable dual addressing mode */
I2Cx->OAR2 &= OAR2_ENDUAL_Reset;
}
}
/**
* @brief Enables or disables the specified I2C general call feature.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2C General call.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_GeneralCallCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable generall call */
I2Cx->CR1 |= CR1_ENGC_Set;
}
else
{
/* Disable generall call */
I2Cx->CR1 &= CR1_ENGC_Reset;
}
}
/**
* @brief Enables or disables the specified I2C interrupts.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_IT: specifies the I2C interrupts sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg I2C_IT_BUF: Buffer interrupt mask
* @arg I2C_IT_EVT: Event interrupt mask
* @arg I2C_IT_ERR: Error interrupt mask
* @param NewState: new state of the specified I2C interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_ITConfig(I2C_TypeDef* I2Cx, uint16_t I2C_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_I2C_CONFIG_IT(I2C_IT));
if (NewState != DISABLE)
{
/* Enable the selected I2C interrupts */
I2Cx->CR2 |= I2C_IT;
}
else
{
/* Disable the selected I2C interrupts */
I2Cx->CR2 &= (uint16_t)~I2C_IT;
}
}
/**
* @brief Sends a data byte through the I2Cx peripheral.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param Data: Byte to be transmitted..
* @retval None
*/
void I2C_SendData(I2C_TypeDef* I2Cx, uint8_t Data)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
/* Write in the DR register the data to be sent */
I2Cx->DR = Data;
}
/**
* @brief Returns the most recent received data by the I2Cx peripheral.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @retval The value of the received data.
*/
uint8_t I2C_ReceiveData(I2C_TypeDef* I2Cx)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
/* Return the data in the DR register */
return (uint8_t)I2Cx->DR;
}
/**
* @brief Transmits the address byte to select the slave device.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param Address: specifies the slave address which will be transmitted
* @param I2C_Direction: specifies whether the I2C device will be a
* Transmitter or a Receiver. This parameter can be one of the following values
* @arg I2C_Direction_Transmitter: Transmitter mode
* @arg I2C_Direction_Receiver: Receiver mode
* @retval None.
*/
void I2C_Send7bitAddress(I2C_TypeDef* I2Cx, uint8_t Address, uint8_t I2C_Direction)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_DIRECTION(I2C_Direction));
/* Test on the direction to set/reset the read/write bit */
if (I2C_Direction != I2C_Direction_Transmitter)
{
/* Set the address bit0 for read */
Address |= OAR1_ADD0_Set;
}
else
{
/* Reset the address bit0 for write */
Address &= OAR1_ADD0_Reset;
}
/* Send the address */
I2Cx->DR = Address;
}
/**
* @brief Reads the specified I2C register and returns its value.
* @param I2C_Register: specifies the register to read.
* This parameter can be one of the following values:
* @arg I2C_Register_CR1: CR1 register.
* @arg I2C_Register_CR2: CR2 register.
* @arg I2C_Register_OAR1: OAR1 register.
* @arg I2C_Register_OAR2: OAR2 register.
* @arg I2C_Register_DR: DR register.
* @arg I2C_Register_SR1: SR1 register.
* @arg I2C_Register_SR2: SR2 register.
* @arg I2C_Register_CCR: CCR register.
* @arg I2C_Register_TRISE: TRISE register.
* @retval The value of the read register.
*/
uint16_t I2C_ReadRegister(I2C_TypeDef* I2Cx, uint8_t I2C_Register)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_REGISTER(I2C_Register));
tmp = (uint32_t) I2Cx;
tmp += I2C_Register;
/* Return the selected register value */
return (*(__IO uint16_t *) tmp);
}
/**
* @brief Enables or disables the specified I2C software reset.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2C software reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_SoftwareResetCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Peripheral under reset */
I2Cx->CR1 |= CR1_SWRST_Set;
}
else
{
/* Peripheral not under reset */
I2Cx->CR1 &= CR1_SWRST_Reset;
}
}
/**
* @brief Selects the specified I2C NACK position in master receiver mode.
* This function is useful in I2C Master Receiver mode when the number
* of data to be received is equal to 2. In this case, this function
* should be called (with parameter I2C_NACKPosition_Next) before data
* reception starts,as described in the 2-byte reception procedure
* recommended in Reference Manual in Section: Master receiver.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_NACKPosition: specifies the NACK position.
* This parameter can be one of the following values:
* @arg I2C_NACKPosition_Next: indicates that the next byte will be the last
* received byte.
* @arg I2C_NACKPosition_Current: indicates that current byte is the last
* received byte.
*
* @note This function configures the same bit (POS) as I2C_PECPositionConfig()
* but is intended to be used in I2C mode while I2C_PECPositionConfig()
* is intended to used in SMBUS mode.
*
* @retval None
*/
void I2C_NACKPositionConfig(I2C_TypeDef* I2Cx, uint16_t I2C_NACKPosition)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_NACK_POSITION(I2C_NACKPosition));
/* Check the input parameter */
if (I2C_NACKPosition == I2C_NACKPosition_Next)
{
/* Next byte in shift register is the last received byte */
I2Cx->CR1 |= I2C_NACKPosition_Next;
}
else
{
/* Current byte in shift register is the last received byte */
I2Cx->CR1 &= I2C_NACKPosition_Current;
}
}
/**
* @brief Drives the SMBusAlert pin high or low for the specified I2C.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_SMBusAlert: specifies SMBAlert pin level.
* This parameter can be one of the following values:
* @arg I2C_SMBusAlert_Low: SMBAlert pin driven low
* @arg I2C_SMBusAlert_High: SMBAlert pin driven high
* @retval None
*/
void I2C_SMBusAlertConfig(I2C_TypeDef* I2Cx, uint16_t I2C_SMBusAlert)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_SMBUS_ALERT(I2C_SMBusAlert));
if (I2C_SMBusAlert == I2C_SMBusAlert_Low)
{
/* Drive the SMBusAlert pin Low */
I2Cx->CR1 |= I2C_SMBusAlert_Low;
}
else
{
/* Drive the SMBusAlert pin High */
I2Cx->CR1 &= I2C_SMBusAlert_High;
}
}
/**
* @brief Enables or disables the specified I2C PEC transfer.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2C PEC transmission.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_TransmitPEC(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected I2C PEC transmission */
I2Cx->CR1 |= CR1_PEC_Set;
}
else
{
/* Disable the selected I2C PEC transmission */
I2Cx->CR1 &= CR1_PEC_Reset;
}
}
/**
* @brief Selects the specified I2C PEC position.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_PECPosition: specifies the PEC position.
* This parameter can be one of the following values:
* @arg I2C_PECPosition_Next: indicates that the next byte is PEC
* @arg I2C_PECPosition_Current: indicates that current byte is PEC
*
* @note This function configures the same bit (POS) as I2C_NACKPositionConfig()
* but is intended to be used in SMBUS mode while I2C_NACKPositionConfig()
* is intended to used in I2C mode.
*
* @retval None
*/
void I2C_PECPositionConfig(I2C_TypeDef* I2Cx, uint16_t I2C_PECPosition)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_PEC_POSITION(I2C_PECPosition));
if (I2C_PECPosition == I2C_PECPosition_Next)
{
/* Next byte in shift register is PEC */
I2Cx->CR1 |= I2C_PECPosition_Next;
}
else
{
/* Current byte in shift register is PEC */
I2Cx->CR1 &= I2C_PECPosition_Current;
}
}
/**
* @brief Enables or disables the PEC value calculation of the transferred bytes.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2Cx PEC value calculation.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_CalculatePEC(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected I2C PEC calculation */
I2Cx->CR1 |= CR1_ENPEC_Set;
}
else
{
/* Disable the selected I2C PEC calculation */
I2Cx->CR1 &= CR1_ENPEC_Reset;
}
}
/**
* @brief Returns the PEC value for the specified I2C.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @retval The PEC value.
*/
uint8_t I2C_GetPEC(I2C_TypeDef* I2Cx)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
/* Return the selected I2C PEC value */
return ((I2Cx->SR2) >> 8);
}
/**
* @brief Enables or disables the specified I2C ARP.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2Cx ARP.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_ARPCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected I2C ARP */
I2Cx->CR1 |= CR1_ENARP_Set;
}
else
{
/* Disable the selected I2C ARP */
I2Cx->CR1 &= CR1_ENARP_Reset;
}
}
/**
* @brief Enables or disables the specified I2C Clock stretching.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param NewState: new state of the I2Cx Clock stretching.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void I2C_StretchClockCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState == DISABLE)
{
/* Enable the selected I2C Clock stretching */
I2Cx->CR1 |= CR1_NOSTRETCH_Set;
}
else
{
/* Disable the selected I2C Clock stretching */
I2Cx->CR1 &= CR1_NOSTRETCH_Reset;
}
}
/**
* @brief Selects the specified I2C fast mode duty cycle.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_DutyCycle: specifies the fast mode duty cycle.
* This parameter can be one of the following values:
* @arg I2C_DutyCycle_2: I2C fast mode Tlow/Thigh = 2
* @arg I2C_DutyCycle_16_9: I2C fast mode Tlow/Thigh = 16/9
* @retval None
*/
void I2C_FastModeDutyCycleConfig(I2C_TypeDef* I2Cx, uint16_t I2C_DutyCycle)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_DUTY_CYCLE(I2C_DutyCycle));
if (I2C_DutyCycle != I2C_DutyCycle_16_9)
{
/* I2C fast mode Tlow/Thigh=2 */
I2Cx->CCR &= I2C_DutyCycle_2;
}
else
{
/* I2C fast mode Tlow/Thigh=16/9 */
I2Cx->CCR |= I2C_DutyCycle_16_9;
}
}
/**
* @brief
****************************************************************************************
*
* I2C State Monitoring Functions
*
****************************************************************************************
* This I2C driver provides three different ways for I2C state monitoring
* depending on the application requirements and constraints:
*
*
* 1) Basic state monitoring:
* Using I2C_CheckEvent() function:
* It compares the status registers (SR1 and SR2) content to a given event
* (can be the combination of one or more flags).
* It returns SUCCESS if the current status includes the given flags
* and returns ERROR if one or more flags are missing in the current status.
* - When to use:
* - This function is suitable for most applications as well as for startup
* activity since the events are fully described in the product reference manual
* (RM0008).
* - It is also suitable for users who need to define their own events.
* - Limitations:
* - If an error occurs (ie. error flags are set besides to the monitored flags),
* the I2C_CheckEvent() function may return SUCCESS despite the communication
* hold or corrupted real state.
* In this case, it is advised to use error interrupts to monitor the error
* events and handle them in the interrupt IRQ handler.
*
* @note
* For error management, it is advised to use the following functions:
* - I2C_ITConfig() to configure and enable the error interrupts (I2C_IT_ERR).
* - I2Cx_ER_IRQHandler() which is called when the error interrupt occurs.
* Where x is the peripheral instance (I2C1, I2C2 ...)
* - I2C_GetFlagStatus() or I2C_GetITStatus() to be called into I2Cx_ER_IRQHandler()
* in order to determine which error occured.
* - I2C_ClearFlag() or I2C_ClearITPendingBit() and/or I2C_SoftwareResetCmd()
* and/or I2C_GenerateStop() in order to clear the error flag and source,
* and return to correct communication status.
*
*
* 2) Advanced state monitoring:
* Using the function I2C_GetLastEvent() which returns the image of both status
* registers in a single word (uint32_t) (Status Register 2 value is shifted left
* by 16 bits and concatenated to Status Register 1).
* - When to use:
* - This function is suitable for the same applications above but it allows to
* overcome the mentioned limitation of I2C_GetFlagStatus() function.
* The returned value could be compared to events already defined in the
* library (stm32f10x_i2c.h) or to custom values defined by user.
* - This function is suitable when multiple flags are monitored at the same time.
* - At the opposite of I2C_CheckEvent() function, this function allows user to
* choose when an event is accepted (when all events flags are set and no
* other flags are set or just when the needed flags are set like
* I2C_CheckEvent() function).
* - Limitations:
* - User may need to define his own events.
* - Same remark concerning the error management is applicable for this
* function if user decides to check only regular communication flags (and
* ignores error flags).
*
*
* 3) Flag-based state monitoring:
* Using the function I2C_GetFlagStatus() which simply returns the status of
* one single flag (ie. I2C_FLAG_RXNE ...).
* - When to use:
* - This function could be used for specific applications or in debug phase.
* - It is suitable when only one flag checking is needed (most I2C events
* are monitored through multiple flags).
* - Limitations:
* - When calling this function, the Status register is accessed. Some flags are
* cleared when the status register is accessed. So checking the status
* of one Flag, may clear other ones.
* - Function may need to be called twice or more in order to monitor one
* single event.
*
* For detailed description of Events, please refer to section I2C_Events in
* stm32f10x_i2c.h file.
*
*/
/**
*
* 1) Basic state monitoring
*******************************************************************************
*/
/**
* @brief Checks whether the last I2Cx Event is equal to the one passed
* as parameter.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_EVENT: specifies the event to be checked.
* This parameter can be one of the following values:
* @arg I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED : EV1
* @arg I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED : EV1
* @arg I2C_EVENT_SLAVE_TRANSMITTER_SECONDADDRESS_MATCHED : EV1
* @arg I2C_EVENT_SLAVE_RECEIVER_SECONDADDRESS_MATCHED : EV1
* @arg I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED : EV1
* @arg I2C_EVENT_SLAVE_BYTE_RECEIVED : EV2
* @arg (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_DUALF) : EV2
* @arg (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_GENCALL) : EV2
* @arg I2C_EVENT_SLAVE_BYTE_TRANSMITTED : EV3
* @arg (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_DUALF) : EV3
* @arg (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_GENCALL) : EV3
* @arg I2C_EVENT_SLAVE_ACK_FAILURE : EV3_2
* @arg I2C_EVENT_SLAVE_STOP_DETECTED : EV4
* @arg I2C_EVENT_MASTER_MODE_SELECT : EV5
* @arg I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED : EV6
* @arg I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED : EV6
* @arg I2C_EVENT_MASTER_BYTE_RECEIVED : EV7
* @arg I2C_EVENT_MASTER_BYTE_TRANSMITTING : EV8
* @arg I2C_EVENT_MASTER_BYTE_TRANSMITTED : EV8_2
* @arg I2C_EVENT_MASTER_MODE_ADDRESS10 : EV9
*
* @note: For detailed description of Events, please refer to section
* I2C_Events in stm32f10x_i2c.h file.
*
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Last event is equal to the I2C_EVENT
* - ERROR: Last event is different from the I2C_EVENT
*/
ErrorStatus I2C_CheckEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT)
{
uint32_t lastevent = 0;
uint32_t flag1 = 0, flag2 = 0;
ErrorStatus status = ERROR;
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_EVENT(I2C_EVENT));
/* Read the I2Cx status register */
flag1 = I2Cx->SR1;
flag2 = I2Cx->SR2;
flag2 = flag2 << 16;
/* Get the last event value from I2C status register */
lastevent = (flag1 | flag2) & FLAG_Mask;
/* Check whether the last event contains the I2C_EVENT */
if ((lastevent & I2C_EVENT) == I2C_EVENT)
{
/* SUCCESS: last event is equal to I2C_EVENT */
status = SUCCESS;
}
else
{
/* ERROR: last event is different from I2C_EVENT */
status = ERROR;
}
/* Return status */
return status;
}
/**
*
* 2) Advanced state monitoring
*******************************************************************************
*/
/**
* @brief Returns the last I2Cx Event.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
*
* @note: For detailed description of Events, please refer to section
* I2C_Events in stm32f10x_i2c.h file.
*
* @retval The last event
*/
uint32_t I2C_GetLastEvent(I2C_TypeDef* I2Cx)
{
uint32_t lastevent = 0;
uint32_t flag1 = 0, flag2 = 0;
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
/* Read the I2Cx status register */
flag1 = I2Cx->SR1;
flag2 = I2Cx->SR2;
flag2 = flag2 << 16;
/* Get the last event value from I2C status register */
lastevent = (flag1 | flag2) & FLAG_Mask;
/* Return status */
return lastevent;
}
/**
*
* 3) Flag-based state monitoring
*******************************************************************************
*/
/**
* @brief Checks whether the specified I2C flag is set or not.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg I2C_FLAG_DUALF: Dual flag (Slave mode)
* @arg I2C_FLAG_SMBHOST: SMBus host header (Slave mode)
* @arg I2C_FLAG_SMBDEFAULT: SMBus default header (Slave mode)
* @arg I2C_FLAG_GENCALL: General call header flag (Slave mode)
* @arg I2C_FLAG_TRA: Transmitter/Receiver flag
* @arg I2C_FLAG_BUSY: Bus busy flag
* @arg I2C_FLAG_MSL: Master/Slave flag
* @arg I2C_FLAG_SMBALERT: SMBus Alert flag
* @arg I2C_FLAG_TIMEOUT: Timeout or Tlow error flag
* @arg I2C_FLAG_PECERR: PEC error in reception flag
* @arg I2C_FLAG_OVR: Overrun/Underrun flag (Slave mode)
* @arg I2C_FLAG_AF: Acknowledge failure flag
* @arg I2C_FLAG_ARLO: Arbitration lost flag (Master mode)
* @arg I2C_FLAG_BERR: Bus error flag
* @arg I2C_FLAG_TXE: Data register empty flag (Transmitter)
* @arg I2C_FLAG_RXNE: Data register not empty (Receiver) flag
* @arg I2C_FLAG_STOPF: Stop detection flag (Slave mode)
* @arg I2C_FLAG_ADD10: 10-bit header sent flag (Master mode)
* @arg I2C_FLAG_BTF: Byte transfer finished flag
* @arg I2C_FLAG_ADDR: Address sent flag (Master mode) "ADSL"
* Address matched flag (Slave mode)"ENDA"
* @arg I2C_FLAG_SB: Start bit flag (Master mode)
* @retval The new state of I2C_FLAG (SET or RESET).
*/
FlagStatus I2C_GetFlagStatus(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG)
{
FlagStatus bitstatus = RESET;
__IO uint32_t i2creg = 0, i2cxbase = 0;
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_GET_FLAG(I2C_FLAG));
/* Get the I2Cx peripheral base address */
i2cxbase = (uint32_t)I2Cx;
/* Read flag register index */
i2creg = I2C_FLAG >> 28;
/* Get bit[23:0] of the flag */
I2C_FLAG &= FLAG_Mask;
if(i2creg != 0)
{
/* Get the I2Cx SR1 register address */
i2cxbase += 0x14;
}
else
{
/* Flag in I2Cx SR2 Register */
I2C_FLAG = (uint32_t)(I2C_FLAG >> 16);
/* Get the I2Cx SR2 register address */
i2cxbase += 0x18;
}
if(((*(__IO uint32_t *)i2cxbase) & I2C_FLAG) != (uint32_t)RESET)
{
/* I2C_FLAG is set */
bitstatus = SET;
}
else
{
/* I2C_FLAG is reset */
bitstatus = RESET;
}
/* Return the I2C_FLAG status */
return bitstatus;
}
/**
* @brief Clears the I2Cx's pending flags.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_FLAG: specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg I2C_FLAG_SMBALERT: SMBus Alert flag
* @arg I2C_FLAG_TIMEOUT: Timeout or Tlow error flag
* @arg I2C_FLAG_PECERR: PEC error in reception flag
* @arg I2C_FLAG_OVR: Overrun/Underrun flag (Slave mode)
* @arg I2C_FLAG_AF: Acknowledge failure flag
* @arg I2C_FLAG_ARLO: Arbitration lost flag (Master mode)
* @arg I2C_FLAG_BERR: Bus error flag
*
* @note
* - STOPF (STOP detection) is cleared by software sequence: a read operation
* to I2C_SR1 register (I2C_GetFlagStatus()) followed by a write operation
* to I2C_CR1 register (I2C_Cmd() to re-enable the I2C peripheral).
* - ADD10 (10-bit header sent) is cleared by software sequence: a read
* operation to I2C_SR1 (I2C_GetFlagStatus()) followed by writing the
* second byte of the address in DR register.
* - BTF (Byte Transfer Finished) is cleared by software sequence: a read
* operation to I2C_SR1 register (I2C_GetFlagStatus()) followed by a
* read/write to I2C_DR register (I2C_SendData()).
* - ADDR (Address sent) is cleared by software sequence: a read operation to
* I2C_SR1 register (I2C_GetFlagStatus()) followed by a read operation to
* I2C_SR2 register ((void)(I2Cx->SR2)).
* - SB (Start Bit) is cleared software sequence: a read operation to I2C_SR1
* register (I2C_GetFlagStatus()) followed by a write operation to I2C_DR
* register (I2C_SendData()).
* @retval None
*/
void I2C_ClearFlag(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG)
{
uint32_t flagpos = 0;
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_CLEAR_FLAG(I2C_FLAG));
/* Get the I2C flag position */
flagpos = I2C_FLAG & FLAG_Mask;
/* Clear the selected I2C flag */
I2Cx->SR1 = (uint16_t)~flagpos;
}
/**
* @brief Checks whether the specified I2C interrupt has occurred or not.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_IT: specifies the interrupt source to check.
* This parameter can be one of the following values:
* @arg I2C_IT_SMBALERT: SMBus Alert flag
* @arg I2C_IT_TIMEOUT: Timeout or Tlow error flag
* @arg I2C_IT_PECERR: PEC error in reception flag
* @arg I2C_IT_OVR: Overrun/Underrun flag (Slave mode)
* @arg I2C_IT_AF: Acknowledge failure flag
* @arg I2C_IT_ARLO: Arbitration lost flag (Master mode)
* @arg I2C_IT_BERR: Bus error flag
* @arg I2C_IT_TXE: Data register empty flag (Transmitter)
* @arg I2C_IT_RXNE: Data register not empty (Receiver) flag
* @arg I2C_IT_STOPF: Stop detection flag (Slave mode)
* @arg I2C_IT_ADD10: 10-bit header sent flag (Master mode)
* @arg I2C_IT_BTF: Byte transfer finished flag
* @arg I2C_IT_ADDR: Address sent flag (Master mode) "ADSL"
* Address matched flag (Slave mode)"ENDAD"
* @arg I2C_IT_SB: Start bit flag (Master mode)
* @retval The new state of I2C_IT (SET or RESET).
*/
ITStatus I2C_GetITStatus(I2C_TypeDef* I2Cx, uint32_t I2C_IT)
{
ITStatus bitstatus = RESET;
uint32_t enablestatus = 0;
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_GET_IT(I2C_IT));
/* Check if the interrupt source is enabled or not */
enablestatus = (uint32_t)(((I2C_IT & ITEN_Mask) >> 16) & (I2Cx->CR2)) ;
/* Get bit[23:0] of the flag */
I2C_IT &= FLAG_Mask;
/* Check the status of the specified I2C flag */
if (((I2Cx->SR1 & I2C_IT) != (uint32_t)RESET) && enablestatus)
{
/* I2C_IT is set */
bitstatus = SET;
}
else
{
/* I2C_IT is reset */
bitstatus = RESET;
}
/* Return the I2C_IT status */
return bitstatus;
}
/**
* @brief Clears the I2Cx<EFBFBD>s interrupt pending bits.
* @param I2Cx: where x can be 1 or 2 to select the I2C peripheral.
* @param I2C_IT: specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg I2C_IT_SMBALERT: SMBus Alert interrupt
* @arg I2C_IT_TIMEOUT: Timeout or Tlow error interrupt
* @arg I2C_IT_PECERR: PEC error in reception interrupt
* @arg I2C_IT_OVR: Overrun/Underrun interrupt (Slave mode)
* @arg I2C_IT_AF: Acknowledge failure interrupt
* @arg I2C_IT_ARLO: Arbitration lost interrupt (Master mode)
* @arg I2C_IT_BERR: Bus error interrupt
*
* @note
* - STOPF (STOP detection) is cleared by software sequence: a read operation
* to I2C_SR1 register (I2C_GetITStatus()) followed by a write operation to
* I2C_CR1 register (I2C_Cmd() to re-enable the I2C peripheral).
* - ADD10 (10-bit header sent) is cleared by software sequence: a read
* operation to I2C_SR1 (I2C_GetITStatus()) followed by writing the second
* byte of the address in I2C_DR register.
* - BTF (Byte Transfer Finished) is cleared by software sequence: a read
* operation to I2C_SR1 register (I2C_GetITStatus()) followed by a
* read/write to I2C_DR register (I2C_SendData()).
* - ADDR (Address sent) is cleared by software sequence: a read operation to
* I2C_SR1 register (I2C_GetITStatus()) followed by a read operation to
* I2C_SR2 register ((void)(I2Cx->SR2)).
* - SB (Start Bit) is cleared by software sequence: a read operation to
* I2C_SR1 register (I2C_GetITStatus()) followed by a write operation to
* I2C_DR register (I2C_SendData()).
* @retval None
*/
void I2C_ClearITPendingBit(I2C_TypeDef* I2Cx, uint32_t I2C_IT)
{
uint32_t flagpos = 0;
/* Check the parameters */
assert_param(IS_I2C_ALL_PERIPH(I2Cx));
assert_param(IS_I2C_CLEAR_IT(I2C_IT));
/* Get the I2C flag position */
flagpos = I2C_IT & FLAG_Mask;
/* Clear the selected I2C flag */
I2Cx->SR1 = (uint16_t)~flagpos;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/